The book can be used as a textbook for a graduate or PhD course. Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers.
More Books:
Language: en
Pages: 274
Pages: 274
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples
Language: en
Pages: 511
Pages: 511
This book brings together the latest findings in the area of stochastic analysis and statistics. The individual chapters cover a wide range of topics from limit theorems, Markov processes, nonparametric methods, acturial science, population dynamics, and many others. The volume is dedicated to Valentin Konakov, head of the International Laboratory
Language: en
Pages: 536
Pages: 536
A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for
Language: en
Pages: 222
Pages: 222
This timely text presents a comprehensive guide to genetic association, a new and rapidly expanding field that aims to elucidate how our genetic code (genotypes) influences the traits we possess (phenotypes). The book provides a detailed review of methods of gene mapping used in association with experimental crosses, as well
Language: en
Pages: 464
Pages: 464
Nowadays bioinformaticians and geneticists are faced with myriad high-throughput data usually presenting the characteristics of uncertainty, high dimensionality and large complexity. These data will only allow insights into this wealth of so-called 'omics' data if represented by flexible and scalable models, prior to any further analysis. At the interface between